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There exists a considerable amount of literature dealing with the motion 

of a bicycle on a horizontal plane. 

At the present time this problem is of interest because of the possibil- 

ity of utilizing the bicycle mechanism in systems containing automatically 

controlled bicycle chassis. 

A method of investigating this problem, when the nonlinear law of the 

front wheel servo control is taken into account, is given below. Stabil- 

ity may be attained for any, even arbitrarily small, bicycle velocity 

provided that the velocity of the steering mechanism servomotor is 

sufficiently great. l 

1. Statement of the problem. Let 8 be the angle between the 

bicycle frame and the vertical, 1/1 be the angle between the front wheel 

and the line MIM2 connecting the points in which the bicycle wheels touch 

the horizontal plane. 

l During preparation of this article for publication, a reviewer noted 

that the stability investigation methods used for cases with large 

disturbances are applied here to a problem which has meaning only for 
small disturbances. 

Although this is ture, the method presented here permits a general- 

ization for the case of additional nonlinear elements, as well as for 

the case of stability of nonsteady motions, thus justifying its appli- 

cation to this particular problem. 
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Fig. 1. 

let us assume that the wheels roll without slipping. Let us utilize 

the known (see, for example [ill equation of the moment of momentum with 

respect to the M1M2 axis: 

In the case of small deviations this equation describes a disturbed 

motion of the bicycle, observed in the vicinity of its steady-state 

motion with constant velocity v along the fixed straight line M1M2. Here 

d denotes the distance between the center of gravity G of the bicycle 

and its load and the line M1M2, c is the distance between the points Ml 

and M2, b is the distance between G' (G' is projection of the center of 

gravity G on the line MIMz) and the point M, where the rear wheel touches 

the horizontal plane (Fig. 1). let us assume that the front wheel is 

steered automatically by a servomotor whose equation of motion is given 

by 

(1.2) 

Here the constant W is characteristic of the gyroscopic moment of the 

front wheel, the stabilizing effect of which is well known [ 21 for the 

case of a freely rolling bicycle, a, E, G*, 1, and N are the control 

system parameters. The nonlinear function f(o) belongs either to the 

class A or class A' of the functions of 131 (Fig. 21. 

It is required to establish stability conditions for the undisturbed 

motion of a bicycle, which is controlled by a servomotor with the non- 

linear characteristic f(o). 

2. Stability when the rolling velocity of the bicycle is 
sufficiently large. Let us introduce the following notation for 
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constants 

g- - - m, 
d 

TZ=$, (2.1) 

Obviously, we have 

e = me - pwe -,n# - pf (0) j,= Jw-t-(4 

Q = (a + mG2) 8 + [E - W (IV + pG2)] e’- (1/l + nG2) +- (N + pG2) f(u) (2.2) 

Let us first reduce these equations to the normal Cauchy form. F3y 
means of the following notations 

fl = q1, 
d0 

--&= jG7jz, qJ = Q, 5 = v/-St (2.3) 

where the new variables are dimensionless and the constant s for the time 

being is left undefined, we obtain 

. 
‘11 = rl29 i2 = ~~2,ql+ b22q2 + bzsrls + kaf (a), $2 = bsarla+ f (0) 

Q = Pl% + Pa’la + Ps’la - w + pG2) f (0) (2.4) 

l’he general stability problem described by equations of the form (2.4) 

has been treated elsewhere [ 41 .Here we use 

m 
-= 219 b --_ 
a 

pw - baa, 
v-i 

-if, = b,, 
8 

-.P=h2 
s 

p1 = a + mG2 

PI = - (+ + nG2) 

(2.5) 

The expression for u deserves special attention. when the moment with 

the constant p is taken into account in the bicycle equation, steering 

the bicycle in the direction of 19 (acceleration of the fall) amplifies 

the effect of control achieved by tachometer feedback. 

ha 

Fig. 2. 

Lat us reduce equations (2.4) to the canonic form. Let A,, A,, X3 be 
the roots of the equation 
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h [k2 - bt& - ha - W,,l = 0 

Ihe canonic transformation shall be defined by the formulas 

This transformation will not be a special one if 44, f A, and thus, it 

can be carried out. lhe canonic equations in terms of the new variables 

shall assume the form: 

i, = h,z, + f(Q), ia = A222 + f(a), x’a = PI% + B2x2 - w (0) (2.7) 

Here 

+)=f+(N+pGa$, B1= 
H @I) 

-hi--A [PI + LIP% + bmpal 

R = - hap2 - hsp,, Pa = a* [Pl + &Pz -I- baaPal (2.8) 

lhe nu&ers X, and h, are defined 

% + A2 = b22, 

ht us specify the condition 

by the equalities 

&,A2 = nW 
8 (2.9) 

nw-m>o (2.10) 

Equation x3 = f&r) for the canonic variable x3 drops out of the system 
(2.7). “zhe nonlinear function I is positive and &?(A,, h2) < 0. 

It is easy to see that stability with respect to the variables zl, x2, 
o also guarantees stability with respect to the variables ql,. q2, q3. ‘Ihe 

problem is to choose the control system constants a, E, C2, 1, iV such 

that stability for any f(a) of class A will be guaranteed. 

kt us examine definite and everywhere positive function 

Its total derivative in accordance with (2.7) is of the form: 

p = - (a$% + a29 + n/(u))2 

if the following relationships are satisfied 
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The equations (2.12) can be solved for a1 and cz2, if the following 
inequalities are satisfied 

P=R+~+$>O, R>O (2.13) 

Da = (hIa + Q)R + h& + Aapaf2hJo m > 0 (2.14) 

Consequently, the stability criterion is reduced to the limiting of the 
choice of the control system parameters by the inequalities (2.13), 
(2.14), and also by the inequality (2.10). let us examine them. l'he in- 
equality R > 0 (2.13) has the form: 

Furthermore, 
pE+W+nQ >pW(N d-P3 (2.15) 

From this we must have 
aln -m>O (2.16) 

'lhe reversal of the inequality is not possible by virtue of (2.10). 
Finally, using (2.8), (2.5), and (2.1), we determine the last stability 
condition: 

ZP=(pV%-n)a+pnW[E- W (N + PW + m (+ + .paG4) t (2.17) 

fZ{(Wn- m)(*yy~ +~Ga+pE-pW(N+pG2~]~> 0 

The derived conditions can be interpreted mechanically. 

If the wheel parameters are given, the constant for the gyroscopic 
momant is W- ku, where k is a proportionality constant, and the inequal- 
ity (2.10) assumes 

Ihis inequality 
ciently large. let 

the form: 

.kv3 > cg (2.18) 

will be satisfied if the bicycle velocity is suffi- 
us note that the inequality (2.18) constitutes the 
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condition of the bicycle self-stabilization due to the gyroscopic moment 
of the wheel of a freely rolling bicycle 121. It imposes a lower limit 
upon the bicycle velocity and it does not contain any control system para- 
meters, In this case the inequality (2.16) inposes a lower limit upon the 
control system parameter a2 and we have 

alVn > cg 
. 

(2.19) 

Ihe inequalities (2.15) and f2.17) 
ingE andG2. 

can be satisfied by properly choos- 

3. Stability for arbitrarily small bicycle velcreity. Let US 

now suppose that the inequality (2.10) characterizing the presence of 
gyroscopic self-stabilization produced by the front wheel is not satis- 
fied. Let 

After eliminating q7 and using (2.4) we find 

$ = bar ia = bzi"rlr + 4a0rla + + lo-l- rf(a)f 

I3y means of a non-singular transformation these equations are reduced 
to the following 

~=P*~.-W-i-~fWI @=%2) (3.2) 

Here pS are the roots of the equation p2 - b,,‘p - &,,O = 0, Since 

_b O= PW/~+~IE--WNI ah - m 
aa 

V/(l/l+nG*) ’ 
- bsro = Is (i/l + nC8) (3.31 

then, specifying that the following inequalities are satisfied, 

we obtain 

The desired transformation, after inversion, may be written as follows: 

711 = ha 
Pa (l-9 - r1) 

@$3--Xl), rla = 
b 

Ps (I*% - Pd &a%! - fwJ (3.5) 

The third equation is found by differentiating with respect to CT. let 

fW = ha + 'P(a) 
where Q, (0) is a function of class A* 

(3.6) 

Let us introduce the notations 
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bzspc, l+hy=M, sm-pB_ Rh, &--.-hap~-~ 

(3.8) 

Then, finally, we get 

(3.9) 

M> 0, 7 >a R > 0, S>Q (3.10) 

and examine the V-function 
m 

V 
a&q ZUlQ 421 

=--x 
--g$J _-x22- 

W-t-F2 1 a 2P.2 s 
[Ma + ‘fQ (41-8 ((Jlda (3.11) 

0 

'Ibis function is positive everywhere except at the origin. Its total 
derivative computed in accordance with equations (3.9) has the form: 

3 = -(lQq + u2x# - 1Mo + 'W (a)1 ISa + RQ (a)1 

if the control system parameters are chosen such that the following equal- 
ities hold 

p2°-$-~2=0, p2~_~_AE=o 
w + pa 

(3.12) 

Together with (3.10) and (3.4) the stability conditions will be of the 
fonn: 

4. Stability conditions and their 
all we have 

interpretation. First of 

(4.1) 

This condition is easily satisfied by properly choosing a suitable 
value of the tachometer feedback constant N. In particular, in the absence 
of a rigid feedback link (I = 00 ) this constant must be non-negative; in 
the rest of the discussion we take N = pn, where p is a positive constant. 

If (4.1) is satisfied then, obviously, M > 0. Two last inequalities 
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of (3.10) can be written as follows: 

If the bicycle control system has no feedback link with constant gain, 

the inequalities (3.4), (4. l), and (4.2) become obvious; the inequality 

(4.2) restricts the choice of the servomotor characteristic to the A 

class of functions. 

Indeed, for the inequalities (4.2) we have 

(-32, PIE--((N+pCz)l 
h> 

[E--((N+pC)]G2 

G2 
3 G’ - p [E - w (N+pC2)1j n (4.3) 

If the bicycle velocity is sufficiently small these inequalities can 

be simplified as follows: 

The first inequality can be satisfied by properly choosing p; the 

second inequality imposes a further restriction upon the servomotors, 

namely, that in addition to having characteristics of the A’ class of 
functions, they must have velocity with the lower bound inversely pro- 

portional to the square of the bicycle velocity. Consequently, in order 

to retain stability at arbitrarily small bicycle velocity u, the servo- 
motor must be able to rotate the front wheel arbitrarily fast. (The 

possibility of this solution was indicated by N.G. Chetaev). 

Another solution can be obtained after making a sirplifying assumption 

G2 = 0. In this case the inequalities (3.13) will assume the form 

E-W(N+pG2)>0 (4.5) 

-(an-yj[E-W(N+pG2)]+[~+n(E-W’WN)]~(1/l+rzG2)+ 

+pW/I+n(E-WW 
1/l+nC2 [E--((N+pC2)1-(a+mG2)}>0 (4.6) 

In a special case (I = 00 ) the inequality (4.6) can be simplified: 

- a (E - WpG2) + E (nWG’ + $ (E - WpC”) - a - rnG2} > 0 (4.7) 

Clearly, conditions (4.6) and (4.7) will be satisfied for sufficiently 

large values of the artificial damping constant E. 

The problem can be generalized to include the case of variable bicycle 
velocity. The methods for solution of the non-steady motions problem in- 

dicated in [ 31 , Chapter XI and in ] 51 , Chapter IX, may be applied in this 
case. 
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